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Abstract. Re-implementing biological mechanisms on ro-

bots not only has technological application but can provide

a unique perspective on the nature of sensory processing in

animals. To make a robot work, we need to understand the

function as part of an embodied, behaving system. I argue

that this perspective suggests that the terms "representation"

and "information processing" can be misleading when we

seek to understand how neurobiological mechanisms carry

out perceptual processes. This argument is presented here

with reference to a robot model of cricket behavior, which

has demonstrated competence comparable to that of the

insect, but utilizes surprisingly simple central processing.

Instead it depends on sensory interfaces that are well

matched to the task, and on the link between environment,

action, and perception.

Introduction

The intersection of biology and robotics the position of

my own research is often characterized as taking informa-

tion from neuroethological investigations of natural systems

to implement as new technology for man-made systems.

However, another aspect of work in this area is to use the

robotic implementations as a means of exploring biological

hypotheses (Webb. 2000). This approach can provide a

perspective on fundamental issues that is complementary to

the view of the biologist engaged in primary research on the

animal. This includes ideas on the most promising routes by
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which biological understanding might inform technological

developments.

My main thesis will be that examining invertebrate sen-

sory systems from this perspective teaches us that they do

not actually do much "information processing" or "repre-

sentation" depending, of course, on how you define these

terms (see below). Whenwe look at invertebrates, it appears

that the function of the sensory systems is not to inform the

animal generally but to control specific behaviors; that the

means by which they do so is often determined as much by

peripheral sensory physics as by central computation; and

that appreciating the problem in terms of an embodied

animal interacting with an environment is more appropriate

than approaching it in terms of building an internal repre-

sentation of the external stimuli. Wehner (1987) used the

term "matched filters" to describe how animals may be

faced with problems that apparently need sophisticated in-

formation processing solutions, but actually solve them by

exploiting sensor mechanisms and behaviors that are

uniquely matched to the required tasks. Further examples

presented in this collection of symposium papers included

the simple visual variables exploited by the bee to control

flight (Srinivasan, 2001), and the use of "fanning" by cray-

fish (Breithaupt, 2001) or moth (Ishida, 2001) to improve

chemical plume tracking.

Given that the terms "representation" and "information

processing" are nevertheless commonly used by inverte-

brate neuroethologists (e.g., during the symposium Thomas

Cronin discussed the scanning movements of the mantis

shrimp eye as implying a relatively sophisticated system for

registering the information properly onto a subjective rep-

resentation of space [Cronin and Marshall, 2001]), a dis-

tinction may need to be drawn between this usage and the

kind of full-blown symbolic encoding and manipulation that

characterizes the "information processing" view of percep-

tion and cognition in traditional Artificial Intelligence. The

claim that a pattern of neural firing represents a stimulus is
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often only a claim that the firing and the presence of the

stimuli causally co-vary: in the same way the electric cur-

rent in a wire might be said to represent the position of an

on-off switch. However, some deplore this as a misuse of

the term "representation." For example. Maze (1981; p. 87)

says that "the connection between the brain state and the

external fact the knowledge of which it subserves ... is just

that of cause and effect, not representation." and Clancey

(1991: p. 110) argues that "structures in the brain that

cannot be perceived [by the agent] have no representational

status to the agent."

The background for this disagreement over appropriate

usage reflects two distinguishable senses of the relationship

of representation. The first I will call "intentional represen-

tation." defined in the theory of signs by Peirce (cited in

Fetzer, 1988) as "something that stands in for something

(else) in some respect or other for somebody" (p. 1 34) for

example, use of the term "LGN" by a scientist to represent

a part of the brain. The second I will call "causal represen-

tation," which describes indirect or mediated presentation,

for example, the activity of ganglion cells presenting retinal

stimulation patterns to LGN. The critical distinction be-

tween these two is that the "intentional" case requires that

the thing represented can be directly experienced by the

representor: the scientist can hear the sound "LGN." or look

at the brain part, and this is why he can use one to represent

the other. In the "causal" case the LGN cannot access the

retinal activity independently for example, to confirm that

the "representation" by the ganglion cells is correct. To

illustrate the distinction another way: an ant may use a

pattern of landmarks as a representation of a nest position,

in which case it can know about the presence of the land-

marks and the presence of the nest in the same way (i.e..

through its senses). If the ant is also said to use the response

pattern of neurons in its brain to "represent" the presence of

the landmarks, the ant's relationship to the neural firing and

to the landmarks are not comparable. Weare using different

levels of description when we say it "recognizes" the land-

marks or "recognizes" the pattern of neural firing. (A pos-

sible source of confusion here is that looking at the ant's

behavior and its neural processes from our point of view, we

may well find that one (the firing) seems to stand in for the

other (the landmark): but this is "intentional representation"

only to the experimenter; to the ant it is merely "causal

representation.")

Similarly, there are distinctions to be drawn between

usages of "information processing." There is the formal

communication theory sense as defined by Shannon (1948);

there is the everyday sense in which information is taken to

be something containing meaning; and then there is the

more recent identification of information processing with

computation that is, involving syntactic manipulation.

None of these maps directly onto the usage whereby, for

example, lateral inhibition in the retina is called information

processing (there is no well-defined sender, receiver, or

probability function; the meaning is opaque in the same way
that the "representation" is non-intentional: and the process-

ing is governed by physical rather than syntactic rules). The

more apposite term here would seem to be signal process-

ing, but "information processing" has become ubiquitous.

Do these distinctions matter, or are they mere semantics?

I would argue they are important because the explanatory

power of applying the terms is very different. It is an

empirical, and somewhat controversial, hypothesis to say

that invertebrate behavior is controlled by intentional inter-

nal representations, manipulated in meaningful information

processing. Whereas to say that behavior is controlled by

"causal" representations and involves "signal" processing is

merely to say that the activity of the nervous system has a

role in controlling the behavior, which was not in doubt.

The same point has been expressed by Beer (2000. p. 97)

with regard to cognitive science: "If any internal state is a

representation and any systematic process is a computation

then a computational theory of mind loses its force."

Moreover, it is not always clear that insect neuroetholo-

gists, in their usage, are not drawing conclusions that rest on

conflating the meanings. An example is the tendency to start

from the observation that an animal behaves differently in

the presence of some stimulus, go on to describe the process

involved as the animal internally "identifying" that stimulus

before responding to it, and from this end up looking inside

the brain for the neural mechanism that carries out the

"identification." If the use of "identify" is only metaphori-

cal, then it should not constrain the interpretation of find-

ings, but it does. As an illustration, we can consider a classic

piece of neuroethology in cricket phonotaxis research, the

discovery of "recognition" neurons in the cricket brain

whose firing rate response corresponds remarkably well to

the likelihood of tracking by the cricket when it is presented

with songs of different syllable rates (Schildberger. 1984a).

Although this discovery is certainly of significance in trying

to disentangle the neural wiring underlying the behavior,

this "representation" of the "attractiveness" of syllable rates

by the firing rate of an identified neuron is by no means an

explanation of the behavior. First, it is not surprising, given

that the animal behaves in different ways to different songs,

that we find some neurons active under conditions when it

does respond and not active when it does not this is simply

to say that its motor behavior is under some kind of neural

control. Furthermore, the result does not in itself tell us how

the neuron comes to have this property: understanding the

mechanism of "recognition" requires understanding the

neural connectivity leading to this property, which to date is

still not fully resolved. Finally, in the neural model de-

scribed below, we found highly comparable property of

correlation of firing rate in certain neurons with syllable rate

preference yet the firing rate here had no functional role in

the behavior but was simply a side-effect (Fig. 1). In fact.
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Figure 1. The "firing rate" of a neuron in the robot model matches the

"phonotactic preference" displayed in behavior. This looks like the "rec-

ognition" neuron discovered in the cricket (Schildberger, 1984) but in fact

plays no functional role in the behavior. (Adapted from Webb and Scutt,

2000.)

there need not be any explicit "identifier" in the brain for the

animal to single out and approach a specific signal, as I will

now describe in more detail.

Modeling Cricket Behavior

Cricket phonotaxis the ability of females to track down

male calling songs includes a significant range of the

problems of responding appropriately to specific sensory

signals: identifying the signal against a noisy background;

recognizing that it is the correct one; localizing its source;

possibly choosing between rival signals. An information

processing approach to this problem identifies the problems
to be solved by the cricket's neural system as filtering for

the right carrier frequency and filtering for the right repeti-

tion rate to recognize the signal (Popov and Shuvalov, 1977;

Thorson el ai, 1982; Stout and McGhee, 1988); comparing
the amplitude of the auditory signal between two sensors to

determine the direction of the source or at least which way
to turn (Schmitz el ai, 1982; Schildberger and Horner,

1988; Huber. 1992); and separating simultaneous sound

sources sufficiently to assess and approach the more attrac-

tive one (Doherty, 1985; Simmons, 1988; Pollack, 1998).

However, closer examination of the peripheral sensing

system in the animal suggests that it may solve at least some

of these problems directly, without any explicit representa-

tion of the song. The pressure difference receiver mecha-

nism that enables the animal to detect the sound direction

(Michelsen et ai, 1994) is inherently dependent on that

sound being within a particular range of wavelengths. The

neural encoding of the subsequent intensity difference be-

tween the ears is potentially in the form of a temporal code

(Schildberger, 1984b; Stumpner et ai, 1995) that could

explain the pattern dependency of the response. Finally, the

animal's behavior in response to sound will position it in the

sound field in such a way that it is likely to end up at the

most attractive source rather than confused between them

(see below). In other words, the behavior does not require

any internal representation of the nature or position of the

sound source.

That this is indeed possible has been demonstrated in a

robot implementation of this suggested mechanism for pho-

notaxis (Webb, 1995; Lund et ai. 1997; Webb and Scutt,

2000). The robot has an auditory system that, like the

cricket's ears, uses cross-delay and summation of the two

signals to produce a strongly directional response despite

small receptor separation. Because the delay is fixed, the

wavelength of the signal is a crucial determinant of the

effectiveness of the device. Thus the robot will, for exam-

ple, locate a 4.7-kHz signal better than one at higher or

lower frequencies, and will preferentially approach a 4.7-

kHz signal when a song of differing frequency is simulta-

neously presented, with no other form of frequency filtering.

The behavior of the robot is controlled by a spiking

neural network consisting of only four units. Two input

units integrate the auditory signal and initiate firing above a

threshold (their behavior is closely modeled on the response

properties of identified neurons [AN1] in the cricket). They

respectively excite two output units, but cross inhibit each

other's axons. Thus the unit that fires first effectively sup-

presses the effect of the other side. The input-output con-

nection is further modulated by synaptic suppression that

is to say, successive spikes have progressively less effect on

the postsynaptic membrane potential, unless there is a gap in

which the synapse can recover. The result is that unless the

input has an appropriate on-off pattern, it is not effective in

generating an appropriate motor response as controlled by
the output units. For example, the robot will show consistent

tracking behavior only to songs that fall within a particular

band of syllable repetition rates, the same as that preferred

by the cricket (Fig. 2). Although this behavioral preference

has a corresponding neural "representation" in the firing

rates of the output units (Fig. 1), the actual explanation of

the behavior lies in the interactions of the neural time

courses of summation and decay, and indeed these generate

the appropriate response much faster than the time that

would be needed to get a reasonable estimate of the firing

rate.

Having the model implemented in a physical device

allowed us to test the behavior in realistic sound fields that

would be difficult to simulate convincingly. Further char-

acteristics of cricket behavior could thus be shown to

emerge from the interaction of the controller, the physical

interface, and the environment, without requiring further

elaboration of the model. With sound from directly above

(i.e., lacking any horizontal directional difference), the
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pattern, the robot, like the cricket (Doherty, 1985), could

consistently choose one as the more attractive signal

(Fig. 3).

Integrating Sensory Systems

One argument advanced in favor of (real) information

processing solutions is that they are more amenable to

scaling up to explain more complex, flexible behaviors such

as the integration of different sensory sources to control

behavior. From an engineering or designer point of view,

this might indeed be the case. Whether it is true of biology

is another question: perhaps biological systems can offer us

alternative schemes perhaps more specialized to the ani-

mal's task niche, but on the other hand flexible and robust

for solving these kinds of problems. As a preliminary start-

ing point for investigating these issues, I will describe some

recent work done in collaboration with Reid Harrison

(Webb and Harrison. 2000a,b) to look at the integration of

the phonotaxis behavior on the robot with another funda-

mental sensorimotor reflex, the optomotor response.

Like many other insects, crickets will rotate in response

to rotation of their visual surroundings. Normally this serves

as a basic stabilization mechanism. The underlying sensor

and neural circuitry for this response has been closely

studied, particularly in the fly (Gotz, 1975; Reichardt and

Poggio, 1976: Heisenberg and Wolf, 1988; Egelhaaf and

Borst, 1993). It has been suggested that, in lit conditions,

crickets will additively integrate their phonotaxis response

and their optomotor response (Bohm et ai, 1991). which

could improve the accuracy of their approach to sound

(Weber el ai. 1981) by controlling for unintended course

deviations.

A sensor that embodies the hypothesized mechanism of

the optomotor response has been built in analog VLSI (very

large scale integration) hardware (Harrison and Koch,

1998). This is a single chip that contains photoreceptors,

temporal filters, comparison units, and widefield summa-

tion. The output can be used as a "torque" signal for the

direction and approximate velocity of motion that would

compensate for the visual rotation. We interfaced this chip

to a robot that also had the sound-sensing circuit and neural

model for phonotaxis described above. The two behaviors

were initially combined in a directly additive way; that is.

the motor output was a weighted sum of the signal given by

the phonotactic turning decision and the signal given by the

optomotor torque. However, this caused some problems,

because turns in response to sound would generate strong

visual rotation signals that the robot would attempt to cor-

rect, thus negating the initial turn. As a second approach, we

used an inhibition scheme in which the robot would ignore

the optomotor signal while turning in response to sound

(other possible solutions are discussed in Webb and Harri-

son, 2000b).

'EBSOUNDSOURCE-

-150 -100
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Figure 4. Tracks of a robot with a 20% motor bias. Top, using

phonotaxis only. Bottom, with an optomotor response added. The optomo-

tor behavior significantly improves the ability to go directly to the sound

source. (From Webb and Harrison. 2000b.)

With this simple interaction scheme it was possible to

show that the added optomotor capability could signifi-

cantly improve phonotaxis, more obviously so under con-

ditions where the motor capability was made less reliable.

Thus Figure 4 shows the behavior of the robot when ap-

proaching a sound source with an induced bias in its motor

output that makes the left wheel turn 20% faster than the

right. Without the optomotor response the robot had some

difficulty reaching the speaker: with the response added it

successfully and directly reached the speaker on all but one

trial. Because the two hardware sensor systems are well

tuned to executing their specific tasks, it was relatively

simple to combine the behaviors to produce a robust per-

formance without any explicit representation of the "fused"

auditory and visual information.
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Conclusion

Robotics engineers already know a lot about information

processing on representations. It is the standard computa-
tional paradigm, but it has proved difficult to employ to get

robots to display behavioral competence comparable to

even "mere" invertebrates. What they can learn from biol-

ogy is how to build smart sensors that are matched to tasks;

how to devise control systems that include patterns of

behavior as part of the sensing process; and how to design

internal nervous systems that exploit these factors. Calling

these latter kinds of processes "representation" and "infor-

mation processing" obscures the distinctive character of the

mechanisms on offer. There is much yet to learn about the

interplay of environments, behaviors, physics, and physiol-

ogy. Biologists may have as much to learn from attempts to

implement these mechanisms as do engineers.
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